HEALTHY BIRTH, GROWTH & DEVELOPMENT

Primary Microcephaly: Do All Roads Lead to Rome?

Samer Moussassi,1 Shasha Jumbe,2 Lifecycle, Auxology, & Neurocognitive Development, Quantitative Physiologic Modeling, and Mother-Fetus Prediction teams3
1Cartara Strategic Consulting, Montreal, Canada; 2Bill and Melinda Gates Foundation; 3Representing the Healthy Birth, Growth, and Development-Knowledge Integration (HBGDki) Community

Objectives

- Symmetric intrauterine growth restriction (IUGR) has a growth pattern where all biometric measurements are affected to the same degree.
- Asymmetric IUGR has growth with small abdominal circumference (AC) compared with other growth parameters:
 - Abnormal head circumference/AC (HC/AC) ratio
 - Abnormal femur length/AC (FL/AC) ratio.
- The objectives of this study were:
 1) To determine the joint probability distributions of growth parameters describing Weight-Length and Head-Circumference (WT/LEN/HC) from age 0 to 24 mo,
 2) To study symmetry across the 3 growth measures to provide useful quantitative guidance to Zika clinicians and researchers on measurements of individuals with a normal/mild-to-moderate/small head relative to other anthropometric measures.

Methods

- Joint parametric nonlinear mixed effects (NLME) model built for WTLLENHC.
- Several parametric models tested such as exponential growth with and without decelerating growth rate.
- Key element: to determine the potential correlations between various growth outcomes WTLLENHC.
- Limited covariate testing done including covariates such as country site, sex, and socioeconomic factors.
- Model fitted using QRPEM fitting engine in Phoenix NLME parallelized on 20 cores.
- Model goodness-of-fit assessed using graphical tools and simulation based diagnostics (VPC).
- Parameter uncertainty obtained from bootstrap resampling over Linux Torque Grid on Global Health Analytics Platform (ghap.io).

Results

- Joint nonlinear deceleration model for WTLLENHC best fit the data (115,000 observations from 1568 subjects) with full random effects variance-covariance matrix.
- Between-subject variability: range, 50% (weight rate of growth) to 10% (length at 0 mo).
- Overall good agreement between observed and simulated data (1 to 97 percentiles).
- Country and sex kept in the model.
- Parameter uncertainty < 30%.
- Model accurately simulated correlated longitudinal data of WTLLENHC from 0-24 months.
- Model accurately predicted probability of stunting and trajectories of HC growth including microcephaly conditional on WT and LEN.
- WT/HC, LEN/HC, and WTLLEN standards were generated by simulating from the model.

Conclusions

- Results address key aspect of characterizing WTLLEN/HC relations and predicting their evolution over time for a specific child, not just the population.
- Potential application of this model includes individualized bivariate or trivariate growth trajectories for early detection of serious conditions such as stunting and microcephaly.
- Microcephaly-disproportionate subpopulation may be identified for further study and intervention.

References

Acknowledgment

All the members of HBGDki initiative, analysts, investigators, donors, and study participants.

Sponsored by the Healthy Birth, Growth and Development HBGDki initiative representing Discovery & Translational Sciences, Integrated Development, Integrated Delivery, Nutrition, Agriculture, Water, Sanitation & Hygiene, Maternal, Newborn & Child Health, Ethics & Conflict Diseases, and Preventive Project Strategy Teams. HBGDki was conceived of and directed by Shasha Jumbe@gatesfoundation.org